Iterated tilted and tilted stably hereditary algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Iterated Tilted Algebras to Cluster-tilted Algebras

In this paper the relationship between iterated tilted algebras and cluster-tilted algebras and relation-extensions is studied. In the Dynkin case, it is shown that the relationship is very strong and combinatorial.

متن کامل

Auslander Generators of Iterated Tilted Algebras

Let Λ be an iterated tilted algebra. We will construct an Auslander generator M in order to show that the representation dimension of Λ is three in case Λ is representation infinite. Recently there has been a lot of attention to compute the representation dimension of a finite dimensional algebra Λ, a notion introduced by Auslander in [A] in an attempt to measure the complexity of the represent...

متن کامل

Cluster-tilted Algebras Are Gorenstein and Stably Calabi-yau

We prove that in a 2-Calabi-Yau triangulated category, each cluster tilting subcategory is Gorenstein with all its finitely generated projectives of injective dimension at most one. We show that the stable category of its Cohen-Macaulay modules is 3-CalabiYau. We deduce in particular that cluster-tilted algebras are Gorenstein of dimension at most one, and hereditary if they are of finite globa...

متن کامل

Cluster-tilted Algebras

We introduce a new class of algebras, which we call cluster-tilted. They are by definition the endomorphism algebras of tilting objects in a cluster category. We show that their representation theory is very close to the representation theory of hereditary algebras. As an application of this, we prove a generalised version of so-called APR-tilting.

متن کامل

Tilted String Algebras

Tilted algebras, that is endomorphism algebras of tilting modules over a hereditary algebra, have been one of the main objects of study in representation theory of algebras since their introduction by Happel and Ringel [10]. As a generalization, Happel, Reiten and Smalø studied endomorphism algebras of tilting objects of a hereditary abelian category which they call quasi-tilted algebras [9]. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2003

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm98-1-4